What can we know from RREF? Hung-yi Lee

Reference

• Textbook: Chapter 1.6, 1.7

Outline

- RREF v.s. Linear Combination
- RREF v.s. Independent
- RREF v.s. Rank
- RREF v.s. Span

RREF v.s. Linear Combination

Column Correspondence Theorem

RREF
$$A = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix} \longrightarrow R = \begin{bmatrix} r_1 & \cdots & r_n \end{bmatrix}$$

If a_j is a linear combination of other columns of A

$$\mathbf{r}_5 = -\mathbf{r}_1 + \mathbf{r}_4$$

 a_j is a linear combination of the corresponding columns of A with the same coefficients

$$a_3 = 3a_1 - 2a_2$$

If r_j is a linear combination of other columns of R

$$r_3 = 3r_1 - 2r_2$$

Column Correspondence Theorem - Example

$$A = \begin{bmatrix} 1 & 2 & -1 & 2 & 1 & 2 \\ -1 & -2 & 1 & 2 & 3 & 6 \\ 2 & 4 & -3 & 2 & 0 & 3 \\ -3 & -6 & 2 & 0 & 3 & 9 \end{bmatrix} \qquad R = \begin{bmatrix} 1 & 2 & 0 & 0 & -1 & -5 \\ 0 & 0 & 1 & 0 & 0 & -3 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$a_{2} = 2a_{1}$$
 $r_{2} = 2r_{1}$
 $a_{5} = -a_{1} + a_{4}$
 $r_{5} = -r_{1} + r_{4}$

Column Correspondence Theorem – Intuitive Idea

$$a_{1} + a_{2} = a_{3}$$

$$A = \begin{bmatrix} 6 & 9 & 15 \\ 8 & 0 & 8 \\ 9 & 2 & 11 \end{bmatrix}$$

$$A = \begin{bmatrix} 9 & 2 & 11 \\ 8 & 0 & 8 \\ 6 & 9 & 15 \end{bmatrix}$$

$$C_{1} + C_{2} = C_{3}$$

$$C = \begin{bmatrix} 12 & 18 & 30 \\ 8 & 0 & 8 \\ 9 & 2 & 11 \end{bmatrix}$$

$$C = \begin{bmatrix} 12 & 18 & 30 \\ 8 & 0 & 8 \\ 9 & 2 & 11 \end{bmatrix}$$

Column Correspondence Theorem (Column 間的承諾): 就算 row elementary operation 讓 column 變的不同, 他們之間的關係永遠不變。

• Before we start:

• The RREF of matrix A is R Ax = b and Rx = b have the same solution set?

• The RREF of augmented matrix [A] Ax = b and Rx = b' havethe same solution set

The RREF of matrix A is R

Ax = 0 and Rx = 0 have the same solution set

• The RREF of matrix A is R, Ax = 0 and Rx = 0 have the same solution set

$$A = \begin{bmatrix} 1 & 2 & -1 & 2 & 1 & 2 \\ -1 & -2 & 1 & 2 & 3 & 6 \\ 2 & 4 & -3 & 2 & 0 & 3 \\ -3 & -6 & 2 & 0 & 3 & 9 \end{bmatrix} \quad R = \begin{bmatrix} 1 & 2 & 0 & 0 & -1 & -5 \\ 0 & 0 & 1 & 0 & 0 & -3 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

• The RREF of matrix A is R, Ax = 0 and Rx = 0 have the same solution set

$$A = \begin{bmatrix} 1 & 2 & -1 & 2 & 1 & 2 \\ -1 & -2 & 1 & 2 & 3 & 6 \\ 2 & 4 & -3 & 2 & 0 & 3 \\ -3 & -6 & 2 & 0 & 3 & 9 \end{bmatrix} \quad R = \begin{bmatrix} 1 & 2 & 0 & 0 & -1 & -5 \\ 0 & 0 & 1 & 0 & 0 & -3 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{a}_{5} = -\mathbf{a}_{1} + \mathbf{a}_{4}$$

$$\mathbf{a}_{1} - \mathbf{a}_{4} + \mathbf{a}_{5} = 0$$

$$x = \begin{bmatrix} 1 \\ 0 \\ 0 \\ -1 \\ 1 \\ 0 \end{bmatrix}$$

$$Rx = 0$$

$$x = \begin{bmatrix} 1 \\ 0 \\ 0 \\ -1 \\ 1 \\ 0 \end{bmatrix}$$

$$r_{5} = -\mathbf{r}_{1} + \mathbf{r}_{4}$$

$$r_{1} - \mathbf{r}_{4} + \mathbf{r}_{5} = 0$$

How about Rows?

Are there row correspondence theorem?

$$A = \begin{bmatrix} 1 & 2 & -1 & 2 & 1 & 2 \\ -1 & -2 & 1 & 2 & 3 & 6 \\ 2 & 4 & -3 & 2 & 0 & 3 \\ -3 & -6 & 2 & 0 & 3 & 9 \end{bmatrix} \quad R = \begin{bmatrix} 1 & 2 & 0 & 0 & -1 & -5 \\ 0 & 0 & 1 & 0 & 0 & -3 \\ 0 & 0 & 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} -a_1^T & & & & \\ -a_2^T & & & & \\ & & a_3^T & & \\ & & & & & \end{bmatrix} \quad R = \begin{bmatrix} -r_1^T & & & \\ -r_2^T & & & \\ & & & & \\ & & & & & \end{bmatrix}$$

$$Span\{a_1, a_2, a_3, a_4\} \quad = \quad Span\{r_1, r_2, r_3, r_4\}$$

Are they the same?

Span of Columns

$$A = \begin{bmatrix} 1 & 2 & -1 & 2 & 1 & 2 \\ -1 & -2 & 1 & 2 & 3 & 6 \\ 2 & 4 & -3 & 2 & 0 & 3 \\ -3 & -6 & 2 & 0 & 3 & 9 \end{bmatrix} \quad R = \begin{bmatrix} 1 & 2 & 0 & 0 & -1 & -5 \\ 0 & 0 & 1 & 0 & 0 & -3 \\ 0 & 0 & 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} a_1 & \cdots & a_6 \end{bmatrix} \qquad \qquad R = \begin{bmatrix} r_1 & \cdots & r_6 \end{bmatrix}$$

$$Span\{a_1, \cdots, a_6\}$$
 $Span\{r_1, \cdots, r_6\}$

Are they the same?

The elementary row operations change the span of columns.

NOTE

- Original Matrix v.s. RREF
 - Columns:
 - The relations between the columns are the same.
 - The span of the columns are different.
 - Rows:
 - The relations between the rows are changed.
 - The span of the rows are the same.

RREF v.s. Independent

Column Correspondence Theorem

The pivot columns are linear independent.

Column Correspondence Theorem

The non-pivot columns are the linear combination of the previous pivot columns.

All columns are independent

Every column is a pivot column

Every column in RREF(A) is standard vector.

Columns are linear independent

Identity matrix

All columns are independent

Every column is a pivot column

Every column in RREF(A) is standard vector.

Columns are linear independent

All columns are independent

Every column is a pivot column

Every column in RREF(A) is standard vector.

The columns are dependent

$$\mathcal{S} = \left\{ \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 4 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \right\}$$
 Dependent or Independent?

More than 3 vectors in R³ must be dependent.

More than m vectors in R^m must be dependent.

Independent – Intuition

RREF v.s. Rank

Rank

Maximum number of Independent Columns

Number of Pivot Column

Number of Non-zero rows

Properties of Rank from RREF

Maximum number of Independent Columns

Rank A ≤ Number of columns

Ш

Number of Pivot Column

Number of Non-zero rows

Rank A ≤ Min(Number of columns, Number of rows)

Rank A ≤ Number of rows

Properties of Rank from RREF

- Given a mxn matrix A:
 - Rank $A \leq \min(m, n)$

Matrix A is <u>full rank</u> if Rank A = min(m,n)

- Because "the columns of A are independent" is equivalent to "rank A = n"
 - If m < n, the columns of A is dependent.

$$\left\{ \begin{bmatrix} * \\ * \\ * \end{bmatrix}, \begin{bmatrix} * \\ * \\ * \end{bmatrix}, \begin{bmatrix} * \\ * \\ * \end{bmatrix}, \begin{bmatrix} * \\ * \\ * \end{bmatrix} \right\}$$

A matrix set has 4 vectors belonging to R³ is dependent

• In R^m, you cannot find more than m vectors that are independent.

Basic, Free Variables v.s. Rank

nullity No. column – non-zero row

2 free variables

 $x_3 = -3$ $x_4 = 2 - x_5$

Rank

RREF v.s. Span

Consistent or not

 Given Ax=b, if the reduced row echelon form of [A b]is

the columns of A

Given Ax=b, if the reduced row echelon form of [A

b] is

$$\begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 2 & 0 \\ \hline 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

b is NOT in the span of the columns of A

$$0 \cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 = 1$$

Consistent or not

Ax =b is inconsistent (no solution)

The RREF of [A b] is

Only the last column is non-zero

Rank $A \neq rank [A b]$

Need to know b

Consistent or not

Ax =b is consistent for **every** b

RREF of [A b] cannot have a row whose only non-zero entry is at the last column

RREF of A cannot have zero row

Rank A = no. of rows

3 independent columns

Ax =b'is consistent for *every* b

Rank A = no. of rows

Every b is in the span of the columns of

$$A = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix}$$

Every b belongs to
$$Span\{a_1, \dots, a_n\} = R^m$$

m independent vectors can span R^m

More than m vectors in R^m must be dependent.

m independent vectors can span R^m

More than m vectors in R^m must be dependent.

• Consider R²

Does
$$S = \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \right\}$$
 generate \mathcal{R}^3 ? yes

Full Rank: Rank = n & Rank = m

Ax = b has at most one solution

The columns of *A* are linearly independent.

All columns are pivot columns.

Full Rank: Rank = n & Rank = m

Every row of R contains a pivot position (leading entry).

 $A\mathbf{x} = \mathbf{b}$ always have solution (at least one solution) for every \mathbf{b} in \mathcal{R}^m .

The columns of A generate \Re^m .